In [44]:
import dask.distributed
import folium
import folium.plugins
import geopandas as gpd
import odc.ui
import shapely.geometry
import yaml
from branca.element import Figure
from IPython.display import HTML, display
from odc.algo import to_rgba
from pystac_client import Client
from odc.stac import configure_rio, stac_load
In [45]:
def convert_bounds(bbox, invert_y=False):
"""
Helper method for changing bounding box representation to leaflet notation
``(lon1, lat1, lon2, lat2) -> ((lat1, lon1), (lat2, lon2))``
"""
x1, y1, x2, y2 = bbox
if invert_y:
y1, y2 = y2, y1
return ((y1, x1), (y2, x2))
In [46]:
cfg = """---
sentinel-s2-l2a-cogs:
assets:
'*':
data_type: uint16
nodata: 0
unit: '1'
SCL:
data_type: uint8
nodata: 0
unit: '1'
visual:
data_type: uint8
nodata: 0
unit: '1'
aliases: # Alias -> Canonical Name
red: B04
green: B03
blue: B02
"*":
warnings: ignore # Disable warnings about duplicate common names
"""
cfg = yaml.load(cfg, Loader=yaml.SafeLoader)
Start Dask Client¶
This step is optional, but it does improve load speed significantly. You don't have to use Dask, as you can load data directly into memory of the notebook.
In [47]:
client = dask.distributed.Client()
configure_rio(cloud_defaults=True, aws={"aws_unsigned": True}, client=client)
display(client)
Find STAC Items to Load¶
In [48]:
km2deg = 1.0 / 111
x, y = (113.887, -25.843) # Center point of a query
r = 100 * km2deg
bbox = (x - r, y - r, x + r, y + r)
catalog = Client.open("https://earth-search.aws.element84.com/v1")
query = catalog.search(
collections=["sentinel-2-l2a"], datetime="2021-09-16", limit=100, bbox=bbox
)
items = list(query.items())
print(f"Found: {len(items):d} datasets")
# Convert STAC items into a GeoJSON FeatureCollection
stac_json = query.item_collection_as_dict()
Review Query Result¶
We'll use GeoPandas DataFrame object to make plotting easier.
In [49]:
gdf = gpd.GeoDataFrame.from_features(stac_json, "epsg:4326")
# Compute granule id from components
gdf["granule"] = (
gdf["mgrs:utm_zone"].apply(lambda x: f"{x:02d}")
+ gdf["mgrs:latitude_band"]
+ gdf["mgrs:grid_square"]
)
fig = gdf.plot(
"granule",
edgecolor="black",
categorical=True,
aspect="equal",
alpha=0.5,
figsize=(6, 12),
legend=True,
legend_kwds={"loc": "upper left", "frameon": False, "ncol": 1},
)
_ = fig.set_title("STAC Query Results")
Plot STAC Items on a Map¶
In [50]:
# https://github.com/python-visualization/folium/issues/1501
fig = Figure(width="400px", height="500px")
map1 = folium.Map()
fig.add_child(map1)
folium.GeoJson(
shapely.geometry.box(*bbox),
style_function=lambda x: dict(fill=False, weight=1, opacity=0.7, color="olive"),
name="Query",
).add_to(map1)
gdf.explore(
"granule",
categorical=True,
tooltip=[
"granule",
"datetime",
"s2:nodata_pixel_percentage",
"eo:cloud_cover",
],
popup=True,
style_kwds=dict(fillOpacity=0.1, width=2),
name="STAC",
m=map1,
)
map1.fit_bounds(bounds=convert_bounds(gdf.unary_union.bounds))
display(fig)
Construct Dask Dataset¶
Note that even though there are 9 STAC Items on input, there is only one
timeslice on output. This is because of groupby="solar_day"
. With that
setting stac_load
will place all items that occured on the same day (as
adjusted for the timezone) into one image plane.
In [51]:
# Since we will plot it on a map we need to use `EPSG:3857` projection
crs = "epsg:3857"
zoom = 2**5 # overview level 5
xx = stac_load(
items,
bands=("red", "green", "blue"),
crs=crs,
resolution=10 * zoom,
chunks={}, # <-- use Dask
groupby="solar_day",
stac_cfg=cfg,
)
display(xx)
Load data and convert to RGBA¶
In [52]:
%%time
rgba = to_rgba(xx, clamp=(1, 3000))
_rgba = rgba.compute()
Display Image on a map¶
In [53]:
map2 = folium.Map()
folium.GeoJson(
shapely.geometry.box(*bbox),
style_function=lambda x: dict(fill=False, weight=1, opacity=0.7, color="olive"),
name="Query",
).add_to(map2)
gdf.explore(
"granule",
categorical=True,
tooltip=[
"granule",
"datetime",
"s2:nodata_pixel_percentage",
"eo:cloud_cover",
],
popup=True,
style_kwds=dict(fillOpacity=0.1, width=2),
name="STAC",
m=map2,
)
# Image bounds are specified in Lat/Lon order with Lat axis inversed
image_bounds = convert_bounds(_rgba.geobox.geographic_extent.boundingbox, invert_y=True)
img_ovr = folium.raster_layers.ImageOverlay(
_rgba.isel(time=0).data, bounds=image_bounds, name="Image"
)
img_ovr.add_to(map2)
map2.fit_bounds(bounds=image_bounds)
folium.LayerControl().add_to(map2)
folium.plugins.Fullscreen().add_to(map2)
map2
Out[53]: